rchg.net
当前位置:首页 >> 怎么求ArCsinx的不定积分 >>

怎么求ArCsinx的不定积分

具体步骤如下:

新年好!可用变量代换与分部积分如图计算。经济数学团队帮你解答,请及时采纳。谢谢!

分部积分法 S表示积分号 Sarcsinxdx=xarcsins-Sxdarcsinx=xarcsins-Sx/根号下(1-x^2)dx=xarcsins+0.5S1/根号下(1-x^2)d(1-x^2)=xarcsins+根号下(1-x^2)+C

用两次分部积分(详见图片)

1、本题的解答方法是分部积分法; 2、若有疑问,请及时追问;若满意,请采纳。谢谢。 3、具体解答如下:

∫ (arcsinx)² dx = x(arcsinx)² - ∫ x * 2arcsinx * 1/√(1 - x²) dx = x(arcsinx)² - ∫ (2x)/√(1 - x²) * arcsinx dx = x(arcsinx)² + ∫ arcsinx * 2/[2√(1 - x²)] d(1 - x²) = x(arcsinx)² + 2∫ ...

令√x=sint 原式=∫t/cost*2sintcostdt=∫2tsintdt=-2∫td(cost)=-2tcost+2∫costdt=-2tcost+2sint+C=-2√(1-x)*arcsin√x+2√x+C

写一写就有:最后一次分部积分后,得到积分部分是 ∫[√(1-x²)]d(arcsinx-arccosx) = ∫[√(1-x²)]{[1/√(1-x²)]-[-1/√(1-x²)]}dx = …… = 2x+C。

你好!可以用凑微分法如下图计算。经济数学团队帮你解答,请及时采纳。谢谢!

网站首页 | 网站地图
All rights reserved Powered by www.rchg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com