rchg.net
当前位置:首页 >> (ArCsinx)^2的不定积分 >>

(ArCsinx)^2的不定积分

∫ (arcsinx)² dx = x(arcsinx)² - ∫ x * 2arcsinx * 1/√(1 - x²) dx = x(arcsinx)² - ∫ (2x)/√(1 - x²) * arcsinx dx = x(arcsinx)² + ∫ arcsinx * 2/[2√(1 - x²)] d(1 - x²) = x(arcsinx)² + 2∫ ...

1、本题的解答方法是分部积分法; 2、若有疑问,请及时追问;若满意,请采纳。谢谢。 3、具体解答如下:

使用分部积分法 ∫arcsinxdx =∫arcsinx(x)'dx =xarcsinx-∫xd(arcsinx) =xarcsinx-∫x/√(1-x^2)dx =xarcsinx+∫(1-x^2)'/√(1-x^2)dx =xarcsinx+∫1/√(1-x^2)d(1-x^2) =xarcsinx+2√(1-x^2)+C 拓展内容: 分部积分法. 设u=u(x),v=v(x)有连续的导数,...

原式=(arcsinx)^2*x-∫xd[(arcsinx)^2] =(arcsinx)^2*x-∫2xarcsinx/√(1-x^2)dx =(arcsinx)^2*x+2∫arcsinxd[√(1-x^2)] =(arcsinx)^2*x+2arcsinx*√(1-x^2)-2∫√(1-x^2)d(arcsinx) =(arcsinx)^2*x+2arcsinx*√(1-x^2)-2∫dx =(arcsinx)^2*x+2arcsinx*√(...

换元,t = arcsinx, dx = cost dt I = ∫ t sin²t dt = (1/2) ∫ t (1﹣cos2t) dt = (1/4) t² ﹣(t/4)sin2t + (1/4) ∫ sin2t dt = (1/4) t² ﹣(t/4)sin2t ﹣ (1/8) cos2t + C = (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx...

∫ (arcsinx)² dx = x(arcsinx)² - ∫ x * 2arcsinx * 1/√(1 - x²) dx = x(arcsinx)² - ∫ (2x)/√(1 - x²) * arcsinx dx = x(arcsinx)² + ∫ arcsinx * 2/[2√(1 - x²)] d(1 - x²) = x(arcsinx)² + 2∫ ...

变量替换

分部积分法 S表示积分号 Sarcsinxdx=xarcsins-Sxdarcsinx=xarcsins-Sx/根号下(1-x^2)dx=xarcsins+0.5S1/根号下(1-x^2)d(1-x^2)=xarcsins+根号下(1-x^2)+C

网站首页 | 网站地图
All rights reserved Powered by www.rchg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com