rchg.net
当前位置:首页 >> (ArCsinx)^2的不定积分 >>

(ArCsinx)^2的不定积分

∫ (arcsinx)² dx = x(arcsinx)² - ∫ x * 2arcsinx * 1/√(1 - x²) dx = x(arcsinx)² - ∫ (2x)/√(1 - x²) * arcsinx dx = x(arcsinx)² + ∫ arcsinx * 2/[2√(1 - x²)] d(1 - x²) = x(arcsinx)² + 2∫ ...

用两次分部积分(详见图片)

使用分部积分法 ∫arcsinxdx =∫arcsinx(x)'dx =xarcsinx-∫xd(arcsinx) =xarcsinx-∫x/√(1-x^2)dx =xarcsinx+∫(1-x^2)'/√(1-x^2)dx =xarcsinx+∫1/√(1-x^2)d(1-x^2) =xarcsinx+2√(1-x^2)+C 拓展内容: 分部积分法. 设u=u(x),v=v(x)有连续的导数,...

换元,t = arcsinx, dx = cost dt I = ∫ t sin²t dt = (1/2) ∫ t (1﹣cos2t) dt = (1/4) t² ﹣(t/4)sin2t + (1/4) ∫ sin2t dt = (1/4) t² ﹣(t/4)sin2t ﹣ (1/8) cos2t + C = (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx...

令√x=sint 原式=∫t/cost*2sintcostdt=∫2tsintdt=-2∫td(cost)=-2tcost+2∫costdt=-2tcost+2sint+C=-2√(1-x)*arcsin√x+2√x+C

f(x) = x^2arcsinx/√(1-x^2) f(-x) =-f(x) ∫(-1/2->1/2) ( x^2arcsinx +1 )/√(1-x^2) dx =∫(-1/2->1/2) dx/√(1-x^2) =[arcsinx]|(-1/2->1/2) = π/3

令√x=sint 原式=∫t/cost*2sintcostdt=∫2tsintdt=-2∫td(cost)=-2tcost+2∫costdt=-2tcost+2sint+C=-2√(1-x)*arcsin√x+2√x+C

利用换元法即可,设:arcsinx = t,则知道原积分变为: §t^2d(sint)..................以下用分部积分法即可 = t^2*sint - 2§tsintdt = t^2*sint + 2§td(cost) = t^2*sint + 2t*cost -2§costdt = t^2*sint + 2t*cost -2sint 再换回原来的x即可: ...

网站首页 | 网站地图
All rights reserved Powered by www.rchg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com